Modern Quandaries

Just as pressures to improve dietary quality influenced early human evolution, so, too, have these factors played a crucial role in the more recent increases in population size. Innovations such as cooking, agriculture and even aspects of modern food technology can all be considered tactics for boosting the quality of the human diet. Cooking, for one, augmented the energy available in wild plant foods. With the advent of agriculture, humans began to manipulate marginal plant species to increase their productivity, digestibility and nutritional content— essentially making plants more like animal foods. This kind of tinkering continues today, with genetic modification of crop species to make “better” fruits, vegetables and grains. Similarly, the development of liquid nutritional supplements and meal replacement bars is a continuation of the trend that our ancient ancestors started: gaining as much nutritional return from our food in as little volume and with as little physical effort as possible.

Overall, that strategy has evidently worked: humans are here today and in record numbers to boot. But perhaps the strongest testament to the importance of energy- and nutrient-rich foods in human evolution lies in the observation that so many health concerns facing societies around the globe stem from deviations from the energy dynamic that our ancestors established. For children in rural populations of the developing world, low quality diets lead to poor physical growth, smaller weight and height and high rates of mortality during early life. In these cases, the foods fed to youngsters during and after weaning are often not sufficiently dense in energy and nutrients to meet the high nutritional needs associated with this period of rapid growth and development.

In the industrial world, we are facing the opposite problem: rates of childhood and adult obesity are rising because the energy-rich foods we crave—notably those packed with fat and sugar—have become widely available and relatively inexpensive. According to recent estimates, more than half of adult Americans are overweight or obese. Obesity has also appeared in parts of the developing world where it was virtually unknown less than a generation ago. This seeming paradox has emerged as people who grew up malnourished move from rural areas to urban settings where food is more readily available. In some sense, obesity and other common diseases of the modern world are continuations of a tenor that started millions of years ago. We are victims of our own evolutionary success, having developed a calorie-packed diet while minimizing the amount of maintenance energy expended on physical activity.

The magnitude of this imbalance becomes clear when we look at traditionally living human populations. Studies of the Evenki reindeer herders that I have conducted in collaboration with Michael Crawford of the University of Kansas and Ludmila Osipova of the Russian Academy of Sciences in Novosibirsk indicate that the Evenki derive almost half their daily calories from meat, more than 2.5 times the amount consumed by the average American. Yet when we compare Evenki men with their U.S. peers, they are 20 percent leaner and have cholesterol levels that are 30 percent lower.

These differences partly reflect the compositions of the diets. Although the Evenki diet is high in meat, it is relatively low in fat (about 20 percent of their dietary energy comes from fat, compared with 35 percent in the average U.S. diet), because free-ranging animals such as reindeer have less body fat than cattle and other feedlot animals do. The composition of the fat is also different in free-ranging animals, tending to be lower in saturated fats and higher in the polyunsaturated fatty acids that protect against heart disease. More important, however, the Evenki way of life necessitates a much higher level of energy expenditure.

Thus, it is not just changes in diet that have created many of our pervasive health problems but the interaction of shifting diets and changing lifestyles. Too often modern health problems are portrayed as the result of eating “bad” foods that are departures from the natural human diet. This is a fundamentally flawed approach to assessing human nutritional needs. Our species was not designed to subsist on a single, optimal diet. What is remarkable about human beings is the extraordinary variety of what we eat. We have been able to thrive in almost every ecosystem on the earth, consuming diets ranging from almost all animal foods among populations of the Arctic to primarily tubers and cereal grains among populations in the high Andes. Indeed, the hallmarks of human evolution have been the diversity of strategies that we have developed to create diets that meet our distinctive metabolic requirements and the ever increasing efficiency with which we extract energy and nutrients from the environment. (Feature article, abridged. From Scientific American, December 2002)

Exercise 3. Which is the best summary of the text? Why?

Can you suggest your own variant of the summary?

  1. Scientific interest in the evolution of human nutritional requirements has a long history. Some scientists argued that the prevalence in modern societies of many chronic diseases—obesity, hypertension, coronary heart disease and diabetes, among them—is the consequence of a mismatch between modern dietary patterns and the type of diet that our species evolved to eat as prehistoric hunter-gatherers. Since then, however, understanding of the evolution of human nutritional needs has advanced considerably—thanks to new comparative analyses of traditionally living human populations and other primates—and a more nuanced picture has emerged. We now know that humans have evolved not to subsist on a single, Paleolithic diet but to be flexible eaters, an insight that has important implications for the current debate over what people today should eat in order to be healthy. The challenge our modern societies now face is balancing the calories we consume with the calories we burn.
  2. Contemporary human populations the world over have diets richer in calories and nutrients than those of our cousins, the great apes. Differences in the settings in which humans and apes evolved may help explain the variation in costs of movement. Chimps, gorillas and orangutans evolved in and continue to occupy dense forests where only a mile or so of trekking over the course of the day is all that is needed to find enough to eat. Much of early hominid evolution, on the other hand, took place in more open woodland and grassland, where sustenance is harder to come by. Thus, for far-ranging foragers, cost-effective walking saves many calories in maintenance energy needs—calories that can instead go toward reproduction. Selection for energetically efficient locomotion is therefore likely to be more intense among far-ranging animals because they have the most to gain.